lunes, 28 de septiembre de 2015

UN SUPERCOMPUTADOR NECESITA 40 MINUTOS PARA SIMULAR 1 SEGUNDO DE ACTIVIDAD CEREBRAL






JUAN RANCHAL, 24 Marzo, 2015

Un proyecto de investigación ha confirmado la potencia de esa impresionante obra de ingeniería que es el cerebro humano, cuya complejidad estamos lejos de conocer y quizá se logre en la próxima década cuando esté disponible la próxima generación de supermáquinas conocidas bajo computación exascale.

El proyecto multidisciplinar de los centros de investigación japonés Riken y el alemán Jülich, tiene por objetivo poner a prueba los límites en tecnologías de simulación y las capacidades del supercomputador K, el cuarto más potente del planeta con 10,5 TFlops/s, gracias a 705.000 núcleos de procesamiento SPARC64 VIIIfx 8C a 2 GHz y 1,4 millones de Gbytes de RAM.

Se trata de la mayor simulación de redes neuronales realizada hasta la fecha. Para ello se utiliza la herramienta de código abierto Neural Simulation Technology (NEST) que replica una red que consta de miles de millones de células nerviosas y una cantidad ingente de sinapsis.
Los resultados mostraron la complejidad del cerebro humano ya que el supercomputador K necesitó 40 minutos para simular un segundo de actividad cerebral. Y eso que se trataba de replicar una red neuronal de solo un 1 por ciento del tamaño real del cerebro humano.

Los neurocientíficos esperan que el proyecto ayude a crear la próxima generación de software de simulación, básico para acercarse al órgano más complejo. También se esperan avances con la llegada de la denominada “Computación Exascale”, que refiere máquinas capaces de realizar un mínimo de 10 elevado a 18 cálculos por segundo. Para poner el dato en perspectiva, sería 1.000 veces más rápido que el primer superordenador petascale que entró en funcionamiento en 2008

miércoles, 23 de septiembre de 2015

DON’T WORRY, THERE WILL NOT BE ANOTHER BIG BANG

CERN (GENEVA) – IN SEARCH OF THE DARK MATTER… THE NEUTRINO

A major research with the Large Hadron Collider (LHC) at CERN in Geneva, the largest research center dedicated to particle physics in the world, is ready to try a new particle detection even more interesting than the Higgs Bosons (responsible for the matter since the beginning of the Universe).
The recent increase in the power of the LHC, could allow the emergence of the first super-symmetric particle being the first candidate the gluino. Detection could provide new clues about the "Dark Matter" that matter around us maintaining the cohesion of the Universe since the beginning, but as it does not reflect or absorb light it cannot be detected.
The NEUTRINO which is the lightest and stable particle that makes up Dark Matter, mass that holds the galaxies in the cosmos, is the aim of this researching stage.


NO NEED TO BE WORRIED; NOR WILL BE THE END OF THE WORLD ... AND BY THE WAY...DARK MATTER IS NOT DARK, IS TRANSPARENT AND UNDETECTABLE


What had existed before the Big Bang?... An intuition based prospection (retrospection)
The accepted scientific hypothesis asserts that at the origin of the Universe, matter and antimatter existed in equal proportions. But matter and antimatter annihilate each other, resulting in pure energy; nevertheless the Universe we observe is composed only of matter. It is unknown why no major structures have been found for antimatter in the Universe.
During the Big Bang -like today in space or in earth thunderstorms- both particles were released, but curiously only matter survived... What tipped the balance?

To put it simply, an atom of matter consists of a nucleus of protons, and neutrons with electrons orbiting around it. In antimatter, we speak of anti-protons and anti-electrons or positrons. The difference between matter and antimatter would lie only in the fact that load, weight and electrons spin in matter are the same; while antimatter represents the asymmetry that breaks down the balance and generates chaos.

It is speculated that the matter which now forms the Universe could be the result of a slight asymmetry in the initial proportions between matter and antimatter (small excess of matter after the Big Bang). It is estimated that the initial difference between matter and antimatter must have been as insignificant as a particle of matter for every ten billion particle-antiparticle pairs.

So the answer seems to be logical: before the Big Bang all would have been DARK MATTER and DARK ENERGY and a MATTER-ANTIMATTER balance, with absolute predominance of Dark Energy that would have led to the explosion in a dense concentrated tiny point of Dark Matter (the “Singularity”) affecting the matter-antimatter balance in favor of a rising baryonic matter, and causing the DARK MATTER together with the Neutrinos (13,800 million years ago), counted by 73% of the mass of the nascent Universe; the rest being BARYONIC MATTER: photons (15%) and atoms (12%), generated in a random way as a result of the BIG BANG.


And the Dark Energy?
It would have been in effect, which broke the Dark Matter tiny point of density and the matter-antimatter balance, leading to the Big Bang; entering embedded and propelling (as would be though a black hole) winning universal space in the dynamics of interaction with Dark Matter in the preservation of gravitational balance within the universe and interacting with the (then) significant proportion of Baryonic Matter (photons and atoms). Dark Energy remained outside the boundaries of the Universe vastly greater volume, creating with the time the great expansive force.

Within the Universe, the COSMOS dynamics was generated from the cosmic microwave background and quantum fluctuations that lead to the formation of Stars, Galaxies, Planets...


The friction and collision of the baryon elements (photons and atoms) with Dark Matter went dynamically generating the formation of bodies; and simultaneously expanding the Dark Energy within the Universe into an exponential dynamic. Dark Matter supported the Baryonic Matter while Dark Energy grew at an exponential rate to predominate and generate the systemic balance between emerging bodies (stars, galaxies-Planets) generating Dark Matter when colliding with the Barionic Matter. The balance is kept through GRAVITY at the boundaries where Dark Energy and Dark Matter interact and in which the graviton would manifest in three levels:

-          Level I.-              
At the expansive boundaries of universe

-          Level II.-
At the orbital boundaries of bodies (starrs, galaxies, planetary systems).

-          Level III.-
The lower, until the atomic level, where the limiting atom cloud is formed setting the boundaries of the electrons rotation around the nucleus

Bear in mind that the theory of general relativity which is a deterministic theory, models gravity as a curvature in space-time that changes with the motion of matter and energy densities.